The Roots of Progress


August 5, 2018

Lately I’ve been reading about the history of plastic, particularly via Stephen Fenichell’s Plastic: The Making of a Synthetic Century. I’ll have more to say about plastic in the future—it is an amazing and vastly underrated substance, a true wonder material—but for now I want to talk about a broader idea.

A major theme of the 19th century was the transition from plant and animal materials to synthetic versions or substitutes mostly from non-organic sources. Some key examples:

These are just a handful of examples. There are many other biomaterials we once relied on—rubber, silk, leather and furs, straw, beeswax, wood tar, natural inks and dyes—that have been partially or fully replaced by synthetic or artificial substitutes, especially plastics, that can be derived from mineral sources. They had to be replaced, because the natural sources couldn’t keep up with rapidly increasing demand. The only way to ramp up production—the only way to escape the Malthusian trap and sustain an exponentially increasing population while actually improving everyone’s standard of living—was to find new, more abundant sources of raw materials and new, more efficient processes to create the end products we needed. As you can see from some of these examples, this drive to find substitutes was often conscious and deliberate, motivated by an explicit understanding of the looming resource crisis.

In short, plant and animal materials had become unsustainable.

The more I saw this theme, the more it seemed strange to me that today, there is a drive to return to biological sources of materials, in the name of “sustainability”. For instance, what is today referred to as sustainable or “green” plastic is made from “renewable” feedstocks, such as polylactic acid, which can be derived from corn. Similarly, biofuels are supposed to be part of the solution to the “unsustainability” of oil.

If plant and animal materials were unsustainable in the 19th century, why are they the solution to sustainability in the 21st?

The answer, I think, lies in a different concept of sustainability, based on a different vision of what exactly we want to sustain.

In the 19th century, the priority was to sustain growth and progress. For the first time in history, economic production and consequently standards of living were undergoing a long, sustained rise. The whole world appreciated this and saw the imperative to keep it going. Anything that got in the way, or even threatened to slow it down, was an obstacle to overcome, lest the world regress into famine, disease, and literal darkness—the very state that humanity had just, finally, pulled itself out of.

To my knowledge, the term “sustainability” was not used in the 19th century in the context of these problems. The term in its current sense was coined by the modern environmental movement circa 1972. It seems to represent a new and different concept: not the sustaining of growth, but simply the sustaining of a given industrial process indefinitely. It also has, perhaps, a connotation of avoiding unforseen disasters caused by technology and industry.

What often seems left out of discussions of sustainability is the sustaining of growth and progress. Indeed, one of the goals of the environmental movement is the exact opposite: to reduce consumption (as in the common mantra “reduce, reuse, recycle”).

To my mind, any solution to sustainability that involves reducing consumption or lowering our standard of living is no solution at all. It is giving up and admitting defeat. If running out of a resource means that we have to regress back to earlier technologies, that is a failure—a failure to do what we did in the 19th century and replace unsustainable technologies with new, improved ones that can take humanity to the next level and support orders of magnitude more growth.

In the 21st century, this could mean energy from improved forms of nuclear power, or some way of harnessing energy from the Sun that is much better than today’s solar panels. It could mean breakthroughs in biotechnology: new sources of food, medicines that conquer bacterial resistance, or even biomaterials that can be manufactured at industrial scale. It could mean machine learning algorithms that optimize the global economy so that we can increase economic production much faster than we increase its mineral inputs.

But based on the history of the 19th century, I’m skeptical that it means plastic made from corn.

Books in this post

Plastic: The Making of a Synthetic Century

Social media link image credit: Ranjithsiji via Wikimedia Commons (CC BY-SA 3.0)